Skip Navigation
Skip to contents

J Pathol Transl Med : Journal of Pathology and Translational Medicine

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Transcriptome"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Identification of invasive subpopulations using spatial transcriptome analysis in thyroid follicular tumors
Ayana Suzuki, Satoshi Nojima, Shinichiro Tahara, Daisuke Motooka, Masaharu Kohara, Daisuke Okuzaki, Mitsuyoshi Hirokawa, Eiichi Morii
J Pathol Transl Med. 2024;58(1):22-28.   Published online January 10, 2024
DOI: https://doi.org/10.4132/jptm.2023.11.21
  • 993 View
  • 176 Download
AbstractAbstract PDF
Background
Follicular tumors include follicular thyroid adenomas and carcinomas; however, it is difficult to distinguish between the two when the cytology or biopsy material is obtained from a portion of the tumor. The presence or absence of invasion in the resected material is used to differentiate between adenomas and carcinomas, which often results in the unnecessary removal of the adenomas. If nodules that may be follicular thyroid carcinomas are identified preoperatively, active surveillance of other nodules as adenomas is possible, which reduces the risk of surgical complications and the expenses incurred during medical treatment. Therefore, we aimed to identify biomarkers in the invasive subpopulation of follicular tumor cells.
Methods
We performed a spatial transcriptome analysis of a case of follicular thyroid carcinoma and examined the dynamics of CD74 expression in 36 cases.
Results
We identified a subpopulation in a region close to the invasive area, and this subpopulation expressed high levels of CD74. Immunohistochemically, CD74 was highly expressed in the invasive and peripheral areas of the tumor.
Conclusions
Although high CD74 expression has been reported in papillary and anaplastic thyroid carcinomas, it has not been analyzed in follicular thyroid carcinomas. Furthermore, the heterogeneity of CD74 expression in thyroid tumors has not yet been reported. The CD74-positive subpopulation identified in this study may be useful in predicting invasion of follicular thyroid carcinomas.
Reviews
Perspectives on single-nucleus RNA sequencing in different cell types and tissues
Nayoung Kim, Huiram Kang, Areum Jo, Seung-Ah Yoo, Hae-Ock Lee
J Pathol Transl Med. 2023;57(1):52-59.   Published online January 10, 2023
DOI: https://doi.org/10.4132/jptm.2022.12.19
  • 4,905 View
  • 213 Download
  • 11 Web of Science
  • 9 Crossref
AbstractAbstract PDF
Single-cell RNA sequencing has become a powerful and essential tool for delineating cellular diversity in normal tissues and alterations in disease states. For certain cell types and conditions, there are difficulties in isolating intact cells for transcriptome profiling due to their fragility, large size, tight interconnections, and other factors. Single-nucleus RNA sequencing (snRNA-seq) is an alternative or complementary approach for cells that are difficult to isolate. In this review, we will provide an overview of the experimental and analysis steps of snRNA-seq to understand the methods and characteristics of general and tissue-specific snRNA-seq data. Knowing the advantages and limitations of snRNA-seq will increase its use and improve the biological interpretation of the data generated using this technique.

Citations

Citations to this article as recorded by  
  • Mapping the cellular landscape of Atlantic salmon head kidney by single cell and single nucleus transcriptomics
    Adriana M.S. Andresen, Richard S. Taylor, Unni Grimholt, Rose Ruiz Daniels, Jianxuan Sun, Ross Dobie, Neil C. Henderson, Samuel A.M. Martin, Daniel J. Macqueen, Johanna H. Fosse
    Fish & Shellfish Immunology.2024; 146: 109357.     CrossRef
  • Impaired cortical neuronal homeostasis and cognition after diffuse traumatic brain injury are dependent on microglia and type I interferon responses
    Jonathan M. Packer, Chelsea E. Bray, Nicolas B. Beckman, Lynde M. Wangler, Amara C. Davis, Ethan J. Goodman, Nathaniel E. Klingele, Jonathan P. Godbout
    Glia.2024; 72(2): 300.     CrossRef
  • Adipose tissue macrophage heterogeneity in the single-cell genomics era
    Haneul Kang, Jongsoon Lee
    Molecules and Cells.2024; 47(2): 100031.     CrossRef
  • Single-cell and spatially resolved transcriptomics for liver biology
    Ping Lin, Xi Yan, Siyu Jing, Yanhong Wu, Yiran Shan, Wenbo Guo, Jin Gu, Yu Li, Haibing Zhang, Hong Li
    Hepatology.2023;[Epub]     CrossRef
  • Integrated analysis of single-cell and bulk RNA-seq establishes a novel signature for prediction in gastric cancer
    Fei Wen, Xin Guan, Hai-Xia Qu, Xiang-Jun Jiang
    World Journal of Gastrointestinal Oncology.2023; 15(7): 1215.     CrossRef
  • Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology
    Elana R. Elkin, Kyle A. Campbell, Samantha Lapehn, Sean M. Harris, Vasantha Padmanabhan, Kelly M. Bakulski, Alison G. Paquette
    Molecular and Cellular Endocrinology.2023; 578: 112066.     CrossRef
  • Analyzing alternative splicing in Alzheimer’s disease postmortem brain: a cell-level perspective
    Mohammad-Erfan Farhadieh, Kamran Ghaedi
    Frontiers in Molecular Neuroscience.2023;[Epub]     CrossRef
  • Single-nucleus transcriptome inventory of giant panda reveals cellular basis for fitness optimization under low metabolism
    Shangchen Yang, Tianming Lan, Rongping Wei, Ling Zhang, Lin Lin, Hanyu Du, Yunting Huang, Guiquan Zhang, Shan Huang, Minhui Shi, Chengdong Wang, Qing Wang, Rengui Li, Lei Han, Dan Tang, Haimeng Li, Hemin Zhang, Jie Cui, Haorong Lu, Jinrong Huang, Yonglun
    BMC Biology.2023;[Epub]     CrossRef
  • Single-cell transcriptomics in thyroid eye disease
    Sofia Ahsanuddin, Albert Y. Wu
    Taiwan Journal of Ophthalmology.2023;[Epub]     CrossRef
Single-cell and spatial sequencing application in pathology
Yoon-Seob Kim, Jinyong Choi, Sug Hyung Lee
J Pathol Transl Med. 2023;57(1):43-51.   Published online January 10, 2023
DOI: https://doi.org/10.4132/jptm.2022.12.12
  • 2,868 View
  • 263 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Traditionally, diagnostic pathology uses histology representing structural alterations in a disease’s cells and tissues. In many cases, however, it is supplemented by other morphology-based methods such as immunohistochemistry and fluorescent in situ hybridization. Single-cell RNA sequencing (scRNA-seq) is one of the strategies that may help tackle the heterogeneous cells in a disease, but it does not usually provide histologic information. Spatial sequencing is designed to assign cell types, subtypes, or states according to the mRNA expression on a histological section by RNA sequencing. It can provide mRNA expressions not only of diseased cells, such as cancer cells but also of stromal cells, such as immune cells, fibroblasts, and vascular cells. In this review, we studied current methods of spatial transcriptome sequencing based on their technical backgrounds, tissue preparation, and analytic procedures. With the pathology examples, useful recommendations for pathologists who are just getting started to use spatial sequencing analysis in research are provided here. In addition, leveraging spatial sequencing by integration with scRNA-seq is reviewed. With the advantages of simultaneous histologic and single-cell information, spatial sequencing may give a molecular basis for pathological diagnosis, improve our understanding of diseases, and have potential clinical applications in prognostics and diagnostic pathology.

Citations

Citations to this article as recorded by  
  • Incorporating Novel Technologies in Precision Oncology for Colorectal Cancer: Advancing Personalized Medicine
    Pankaj Ahluwalia, Kalyani Ballur, Tiffanie Leeman, Ashutosh Vashisht, Harmanpreet Singh, Nivin Omar, Ashis K. Mondal, Kumar Vaibhav, Babak Baban, Ravindra Kolhe
    Cancers.2024; 16(3): 480.     CrossRef
  • Potential therapeutic targets for hypotension in duchenne muscular dystrophy
    Harshi Saxena, Neal L. Weintraub, Yaoliang Tang
    Medical Hypotheses.2024; 185: 111318.     CrossRef
  • A comparative analysis of single-cell transcriptomic technologies in plants and animals
    Vamsidhar Reddy Netla, Harshraj Shinde, Gulshan Kumar, Ambika Dudhate, Jong Chan Hong, Ulhas Sopanrao Kadam
    Current Plant Biology.2023; 35-36: 100289.     CrossRef
  • Fibroblasts – the cellular choreographers of wound healing
    Samuel Knoedler, Sonja Broichhausen, Ruiji Guo, Ruoxuan Dai, Leonard Knoedler, Martin Kauke-Navarro, Fortunay Diatta, Bohdan Pomahac, Hans-Guenther Machens, Dongsheng Jiang, Yuval Rinkevich
    Frontiers in Immunology.2023;[Epub]     CrossRef

J Pathol Transl Med : Journal of Pathology and Translational Medicine